CUC 2004

HIGH PERFORMANCE CLUSTER
DISTRIBUTION DESIGN

Authors:
Nikola Pavkovic,
Valentin Vidic,
Karolj Skala

Table of Contents

1. INTRODUGTION. ...ceiiiiietee et e e e e e e e ennnnnnnnnes 3
2. CLUSTER TYPES. ... e e eeeeeeeeas 3
2.1 SSI CIUSTEIS. .. e e e e e e e e e 3
2.2 N0N-SSI CIUSTEIS. ... e 4

3. PROBLEMS. ...t et e e e e e e et e e e e e e e e e e e eeeeeeeees 5
3.1 Automatic node installation strategies............ooooiciiiiiiiiiiiiieeeeeen 5
3.1.1 RedHat KickStart file........cooooiiiieee e e 5
3.1.2 System Installation Suite (SIS)......ccueiuiiiiie 6

3.2 Distributed fileSYStEM.......ooe e e 7
3.3 Centralized account management..........oocooooiiiiiii 7
3.3.1 File replication..........oo oo e 8
3.3 2 NIS (Y P et e 8
3.3 8 LD AP e e as reeeaaaa 8

3.4 Resource Management............uuuueeeiiiiiieieeieeee e e aeeeeas 9
3.5 Health & performance monitoring...........ccoooeveeiiiiiiiiiiiie e 9
3.5.1 GaANGlA. - et reeeeen 9

3.6 Software packages distribution management.............cccevveviiiiceineen. 10
3.6.1 NPACI ROCKS - an XML approach to system configuration........ 10
3.6.2 System Installation Suite (SIS)......ceeumiiiie 10

4. Our efforts within the DCD Project.........ooeeiiiiei oo 11
4.1 Debian as a base - 0ur ChOICE........ccccuiiiiie e 11
4.2 DCOD STUCTUIE.....eeeeee e e 12
4.2.1 Automatic installation and deployment of working-nodes............. 12
4.2.2 Automatic queueing system configuration............ccccciiieeeeiiieennne 13
4.2.3 User files distribution in the Cluster.............ccooiiiiiiiieeee 13
4.2.4 Monitoring the resources and alarming in critical situations.......... 13
4.2.5 Managing NIS information within a cluster............ccccccoiiiienee 14

4.3 The dcd-utils software package..........ccccce v 14
4.3.1 EAIIMAGE. .. ettt e 15
VG 2 o [of [T - To [[V E=] Y PP 16
4.3.3 AISCOVEr _NOUE......cceiiieiie et e e e et e e e e e e e e e sannaaans 16

B CONCIUSION. ...ttt et e e e e e e e e e e e s nnne 2eeenn 18

1. INTRODUCTION

Linux clusters are being more and more adopted as supercomputing
infrasructure facilities in scientific research laboratories, but also in other
kinds of research work where high computing power is essential. With their
price/performance ratio linux clusters more and more take over the market
share of specialized super-computers.

In order to build a "linux cluster" from a number of standalone PCs, one must
upgrade a standard linux distribution with some extra functionality which will
provide easy installation, administration, enforcing the security policy and
monitoring of elementary resources within a linux cluster. Althogh some of
the tools already exist, there are a very few complete distributions of linux
targeting high-perfomance users.

In this paper, we will cover technical issues regarding deployment of a Linux
cluster as a high-performance infrastructural facility.

2. CLUSTER TYPES
2.1 SSI clusters

Clusters which do not have the operating system installed on every node's
disk drive, but run only one single copy of the operating system on the master
node, are called "Single System Image" clusters (SSI).

Usually, users but also applications, do not have to be 'aware' of the
distributed environment, because SSI clusters provide some kind of
transparent middleware which makes the bunch of nodes look like one big
computer. The whole cluster shares the same PID space, running processes
can migrate between the nodes, in order to balance the load on the cluster,
UNIX domain sockets and also pipes are shared between the nodes etc...

One of the most promising project adressing the Single System Image cluster
deployment is OpenSSI [http://openssi.org]. It integrates various technologies
like OpenMosix [http://openmosix.sourceforge.net/] (used for dynamic
process migration), OpenGFS [http://opengfs.sourceforge.net/] (used for
sharing the same filesystem among all nodes), and also provides a
programming interface for some cluster-specific functions.

The main problem with SSI clusters today is scalability. The concept of a
single sistem image used by all nodes results with a bottleneck on the storage
system interface as the number of nodes grow. Because of this
(technological) limitation, largest SSI clusters today have up to 128 nodes.

2.2 non-SSI clusters

In large clusters, most usual method for accessing the system image is to
have it installed on the local storage device (i.e. hard disk). Since every node
in the cluster runs it's own copy of the operating system, it is pretty obvious
that maintaining such a bunch of Linux machines is not an easy job,
especially as the number of nodes grow. There are some specialized Linux
distributions that integrate some extra functionality into the system in order to
simplify maintainance of large clustered systems. The most used cluster-
targeted distributions are NPACI ROCKS [http://www.rocksclusters.org/] and
OSCAR [http://oscar.sourceforge.net/], both based on RedHat linux.

Let's address the real technical problems that one must face when building a
Linux cluster.

3. PROBLEMS

3.1 Automatic node installation strategies

In order to minimize the time needed to deploy a linux cluster, one of the
important features that should exist in a clustered system is an automatic
node installation mechanism. There are several approaches to this problem,
so let's see what can be done to automate the node-installation process.

3.1.1 RedHat KickStart file

As of version 5.0, RedHat [http://www.redhat.com/] has introduced the so-
called KickStart installation method. The kickstart file (called ks.cfg) is used to
hold every single information that is needed to install the operating system, so
human attendance is not necessary. The kickstart file actually contains the
following information:

e lLanguage selection
Mouse configuration
Keyboard selection
Boot loader installation
Disk partitioning
Network configuration
NIS, LDAP, Kerberos, Hesiod, and Samba authentication
Firewall configuration
Package selection

X Window System configuration

As the installation process begins, the kickstart file should be provided to the
installation process. As the installation process gets all the required
information, everything else is done automatically. The NPACI ROCKS
distribution takes advantage of this functionality, which will be described later.

3.1.2 System Installation Suite (SIS)

Another approach to fast deployment of a linux cluster is to use SIS software.
SIS is a software suite developed especially for automation of installation
tasks. The suite consists of three components: systemimager, systeminstaller
and systemconfigurator. Philosophy of SIS software is to build the target
image on the image server, and then deploy it on a number of (similar)
computers. This is almost exactly what we want to do in a linux cluster.

3.2 Distributed filesystem

In practice, some parts of the main filesystem located on the login-node of the
cluster need to be accessible from all the work-nodes. For example, it is very
convinient for the user to have his/her home directory content available on the
work-nodes, because it is a common practice for the user, if using a non-
system-wide installed application , to distribute the executables, libraries,
datasets, licence files etc. within his/her home directory. In order to provide
this funcionality, most of the clusters have some kind of network filesystem
distribution. Speaking about production-level clusters today, the most often
used method for distributing the filesystem contents to the work-nodes is the
NFS (Network File System). [http://nfs.sourceforge.net/]

There are also some other approaches to this issue. For example, the PVFS
(Parallel Virtual Filesystem) [http://www.parl.clemson.edu/pvfs/]. The main
idea in PVFS is to have the storage units distributed almost symmetrically on
all the cluster-nodes and provide a TCP communication interface in order to
integrate those storage units logically, appearing as a big virtual filesystem,
accessible from all the cluster-nodes. Although this idea is very promising,
there still exist some performance issues, especially with applications that use
a small I/O buffer when accessing the filesystem.

3.3 Centralized account management

In order to provide full user-account information to the work-nodes, the central
user-account information database must be distributed within the cluster.
There are several possibilities to solve this problem.

3.3.1 File replication

Every time a change is made in the central user-account database located on
the login-node, a script is triggered, which copies all the changed files to all
the work-nodes, at least to the ones that are alive at that very moment.
Beside that trigger-based replication, a regular automatic synchronization
must be done.

3.3.2 NIS (YP)

Another way for user-account information distribution is to use NIS (Network
Information Services) protocol [http://www.linux-nis.org]. The NIS server
resides on the login-node, and provides all the user-account information to
the work-nodes.

3.3.3 LDAP

Lightwight Directory Access Protocol is becoming more and more popular for
accessing different kinds of directory-structured information within big
organizations. An interesting approach when building a cluster is to store
user-account information in a LDAP server on the login-node, so that the
work-nodes contact the server when authenticating a user, or accessing
user'saccount-information. The database can easily be replicated to
additional LDAP servers within the cluster, in order to balance the network
utilisation in big clusters. Since LDAP is very popular for information
distribution in grid-computing, it makes a good choice to use it as a
centralized account management tool also. An interesting point is that LDAP,
for it's openness, has some very interesting application possibilities beside
these mentioned above [Debconf [debian configuration management system]
database can be stored within a LDAP directory, so it could be possible to
centralize the whole cluster-wide system configuration within a single
database.]

3.4 Resource management

In order to integrate the cluster-nodes in a unified computational resource,
some kind of central resource management system is needed. The resource
management system takes care of load-balancing within the cluster fair-
usage enforcement etc. Different resource management systems exist today,
some of them are Torque, SGE, DQS...

3.5 Health & performance monitoring

One of important issues when deploying a high-performance cluster is the
performance and health monitoring system. There are many things a system
administrator will want to monitor when putting the cluster to production.
Graphical web-enabled interface is also desirable, so that all the monitored
data can be visually displayed.

3.5.1 Ganglia

One of the most used tool for monitoring system health and performance
within linux clusters is called ganglia [http://ganglia.sourceforge.net/]. It's
architecture allows it to operate in very large clusters, minimizing network 1/0O
overhead and using multicast channels. The ganglia system is very extesible
because of the 'gmetric' modules that provide a script-interface, so one could
write a simple script to monitor almost anything.

3.6 Software packages distribution management

When deciding which software should be installed on the cluster-nodes, a
comfortable environment for software selection, configuration and testing is
desireable. There are few approaches to this issue which we'll be addressed
now.

3.6.1 NPACI ROCKS - an XML approach to system
configuration

The ROCKS cluster distribution, one of the most mature cluster-distributions
on the open-source market today uses a interesting technique for software
configuration, involving XML. Since the ks.cfg (the RedHat kickstart file, on
which ROCKS installation automation system strongly depends) holds all the
information about the software that is to be installed on a cluster-node, it
(ks.cfg) is being build dynamically as the node requests the file from the
install server. The XML configuration files get parsed and the resulting ks.cfg
is built on the fly, providing the node all the information it needs to install itself
automatically.

3.6.2 System Installation Suite (SIS)

The mechanism behind SIS suite is very simple. Since the image of the target
operating system is built on the image-server, one can easily modify the
contents of the image by simply 'chrooting' [see section 4.3.1] into the
image's direcory and issuing commands just as one was sitting at the target-
node console. After the modifications to the image are done, the administrator
exits the chroot jail, and issues a command to deploy the new image on the
target nodes.

10

4. Our efforts within the DCD project

4.1 Debian as a base - our choice

There are many linux distributions available on the market today, and every
one of them has some pros and cons. But, some quality characteristics make
Debian GNU/Linux a prime choice when selecting a platform for intensive
"Mission-critical" applications.

From practical expirience, it is very well known that Debian handles the
security patches in a very unique, admin-friendly way. The average system
can be upgraded to up-to-date package versions in a few minutes, issuing
only one single command. This is essential, because no administrator wants
to spend his/her time manually resolving inter-package dependancies. There
are some tools developed for this task targeted for other distributions, but
APT (Debian's package tool) has been integrated into the system a long time
ago, and is prooved to be very reliable tool, which is capable of resolving
most complex inter-package dependecy problems.

On the other hand, Debian security team is one of the most responsive
security teams among other linux distribution's security teams. All the
disclosed security issues are patched and put to the official Debian APT
mirror sites in less than 48 hours. Debian is often the first linux distribution
that releases a patched package when a security problem occurs. In order to
keep the system's security level high, this is a very important issue.

Legal aspect also sugests Debian. Debian tries hard to be the 'purest' GNU
distribution. The social contract assures that all the developed software is to
be held within Open Source. Since it is driven by 'phylosophy', rather than the
market, the concept is fully functional for more a decade. Unlike some other
distributions, the first goal for Debian is quality of released software, and
since it is not driven by the market, there is always plenty of time to assure
the quality of software.

11

Looking from technical, legal and security points of view, Debian makes the
first choice when selecting a linux distribution for mission-critical deployment.
Therefore, we decided to develop some extra tools for the Debian system that
will provide cluster-deployment functionality. A small OSS project is born, for
now we call it DCD, which stands for the Debian Cluster Distribution.

4.2 DCD structure

DCD is meant to be a add-on bunch of packages that are to be installed on
top of a regular Debian Sarge distribution. By adding an entry to the
sources.list configuration file, and issuing one single command one can have
a fully functional cluster-front-node ready for automatic installation and
deployment of working-nodes in the cluster.

Let's see how DCD handles different issues mentioned above.

4.2.1 Automatic installation and deployment of
working-nodes

DCD strongly depends on SIS for automatic deployment of a system-image
on the work-nodes. For the SIS suite to become fully functional we had to
patch some parts of it, namely some parts of the SystemInstaller component.
The image is built issuing only one single command, and the resulting image
is very easy to modify. We developed a SIS add-on command called
‘editimage’ which puts the administrator into the chroot jail of the desired
image so he/she can modify the image just the same way if the image was on
a real work-node [apt-get ...] As the admin has finished modifying the
image's content, he/she simply exits the shell and issues another command
'‘cpushimage' [a part of ¢3 suite] in order to update the image on the real
work-nodes.

12

As opposed to the XML-approach, we find this way of image-modification
much more natural and intuitive. One doesn't have to learn the concepts of
XML in order to maintain a linux-cluster, and since the actual full image of the
working node filesystems is available right on the image server, it is natural to
enter a chroot-jail within the images' directory and behave just like one was
sitting in front of a real work-node console.

We also developed some tools for dynamic work-node insertation, leaving
behind the need to manually build the SIS database using the "mksirange”
command everytime a new node is put into the cluster.

4.2.2 Automatic queueing system configuration

Since fine-tuning the queueing system can never be fully automated,
management of the queueing system does not depend on the cluster suite,
but is better done manually. For less expirienced users, we decided to include
generic automatic queueing system configuration by default.

4.2.3 User files distribution in the cluster

For distributing users' home directory contents within the cluster the Network
File System (NFS) was chosen. NFS has prooved to be very stable and
reliable, and for it's robustnes it is our prime choice according this issue.

4.2.4 Monitoring the resources and alarming in
critical situations

For it's scalability and flexibility, ganglia was chosen for system performance
monitoring. As ganglia itself is capable of acquiring almost any thinkable
information from all the cluster-nodes in a very scalable way, but is, on the
other hand unable to provide reasonable alarming functionality, we are

13

considering integration of glaglia as a information-aggregator and nagios or
similar software for alarming in critical situations. Some debian packages,
particulary for ganglia-web-frontend, have already been assembled within the
DCD project, you can find more information in the Appendix section.

4.2.5 Managing NIS information within a cluster

One of the most challenging issues when building a cluster is the underlying
authentication infrastructure. Since LDAP has prooved to be very stable in
production deployment, it's flexibility and openness made it the prime choice
for authentication and user-information distribution within the cluster.

LDAP has a very promising future. For it's openness it is applicable in almost
every layer of the IT infrastructure. Some pretty interesting functionality can
be provided by LDAP, such as debconf integration, SIS integration (as a
beckend for the SIS database), but this work is still in early development.

We are considering LDAP replication on cluster-nodes, in order to balance
the network load in large clusters.

4.3 The dcd-utils software package

The dcd-utils software package consists of the tools developed within the
DCD project. These tools are used to simplify different tasks when
administering a cluster of computers and addressing some issues mentioned
above. Let's name some of them:

14

4.3.1 editimage

The editimage tool is a simple shell script that takes care of all the possible
issues when editing an work-node system image. The image of the working
node is located on the front-node's filesystem and represents an exact
replication of the real-work-node system image. Therefore it is possible to
enter a so-called 'chroot-jail', which means that the interactive shell 'sees' that
directory as the root directory of the system. Editimage takes various actions
when executed:

enters such a chroot-jail within the images directory,

mounts /proc filesystem within it,

replaces the start-stop-daemon script with the dummy script in order not to
(re)start services when upgrading a package within the image, and
® gives a shell.

As the wanted changes are made to the image after exiting the
shell,editimage takes following actions:

e unmounts the /proc filesystem,
e puts back the original start-stop-daemon script, and
e removes the lock file.

This approach makes management of the work-node system configuration
very comfortable, because it is done pretty much in the same way as sitting
on the console of a real computer and making changes to a live system. After
the task is completed, the 'cpushimage' command may be issued in order to
apply the changes to the work-nodes.

As opposed to the XML-style work-node configuration found in ROCKS Linux

cluster-distribution, our approach does not need any extra knowledge about
XML and is therefore easier to adopt by less expirienced users.

15

We have also noted significant performance boost in administration tasks
regarding work-node system configuration and maintainance while using this
mechanism.

4.3.2 dcd _adduser

Since we use LDAP to store user account information, we needed to create a
tool that eases the user-management tasks when dealing with LDAP. Also
some other issues are covered. Automatic SSH key generation is preffered
right after the account has been opened, and the public key is copied to the
$HOME/.ssh/authorized keys file which makes a transparent access to
every node in the cluster possible. It should be mentioned that using NFS, the
users' home directories are available on all the nodes, so that the .ssh/
directory is available, and the authentication can be done with SSH keys.

4.3.3 discover node

System Installation Suite, which is used as the core autoinstallation
mechanism for the work-nodes keeps host information (hostnames, IP
addresses, MAC addresses, Network configuration...) within the SIS
database. A typical database content is shown below:

Machine definitions.....

Name Hostname Gateway Image
nodel nodel.cluster 10.0.0.1 sarge
node?2 node2.cluster 10.0.0.1 sarge
node3 node3.cluster 10.0.0.1 sarge
node4 node4.cluster 10.0.0.1 sarge

Adapter definitions.....

Machine Adap IP address Netmask MAC

nodel eth0O 10.0.0.10 255.255.255.0 00:02:b3:9c:35:30
node2 eth0 10.0.0.11 255.255.255.0 00:02:b3:9c:31:89
node3 eth0 10.0.0.12 255.255.255.0 00:02:b3:9c:a6:95
node4 eth0 10.0.0.13 255.255.255.0 00:02:b3:9c:40:ad

SIS comes with all the necessary tools for managing that database, but
although a very practical tool, SIS lacks dynamic node insertation
mechanism. It means that every time a new node is added to the cluster, one
must manually enter the MAC address information to the database in order to
make the autoinstallation work properly. Therefore we developed a handy tool
to automate the node insertation process. The script expects the DHCP
server logs on the standard input, parses the contents, and after a DHCP
request is found, the MAC address is extracted. A typical DHCP log entry of
interest looks like:

Aug 28 14:15:02 fk-grozd dhcpd: DHCPDISCOVER from \
00:02:b3:9c:40:ad via ethl: network)\
10.0.0.0/24: no free leases

After that, various actions are taken. First, the SIS database is being queried
to check for possible existance of the discovered MAC address within the
database. If such a MAC address already exists it ignores it, and goes on. If
the MAC address is not already in the database, the new node is given a
name, an IP address, and as all the information are available, the database is
being updated with the new record. As we have now a consistent database,
we can easily issue 'mkdhcpdconf' command in order to synchronize the
DHCP server configuration and the database. Also, there is a possibility to
replace existing nodes in the database. If so, the node name has to be given
as the argument, so discover_node makes pretty the same thing as described
above, but now it doesn't add a new node, but replaces an existing record in
the database with the new one.

17

After the database and DHCP server configuration is over, the DHCP server
is being restarted for the changes to take effect, and the queueing system is
configured according to these changes.

For some generic configurations (as most ad-hoc clusters are built), this tool
frees the administrator from learning how the SIS mechanism works, and
speeds up the deployment process.

5. Conclusion

Open Source software is a great way to express creativity because other
people from the OSS community can take advantage of one's work, adopt it
to his/her own needs, add new functionality and publish these changes giving
it back to the community for further development. This results in a distributed
development model which has prooved to be very effective because all the
prior work from all the OSS projects is taken into consideration before
choosing the right solution. If none of the available solutions are satisfying,
one can decide to develop something new, or (as the regular case is) extend
the functionality of some existing project to adopt it to specific needs. That is
exactly the way this project works, and we are proud to share the results of
our efforts with the OSS community.

We expect to develop a toolset for easier cluster management, based on
Debian GNUY/Linux distribution. This involves development of automation
mechanisms that provide a flexible platform for high-performacne
computation tasks, but also provide a system-administrator to have a secure,
easy to maintain, reliable and good supported cluster distribution. All the
automation mechanisms and extra funtionality will be available as debian
packages on the APT repository, and the vision for the future is to integrate
our efforts with the Debian project.

18

