Can Web understand Croatian language?

Can Web understand Croatian language?

Albert Novak
Croatian Academic and Research Network
Albert.Novak@CARNet.hr

Abstract: Today we have new standards from the W3 consortium to access
the Web-based services. The special browser called "Voice Browser" allows any
telephone to be used to access the appropriately designed Web-based services
and can be of help to people with visual impairment. It can also allow effective
interaction with the Web content in the cases where using the mouse and
keyboard may be inconvenient. It is the intention of this paper to explain how we
can use VoiceXML to access from "Voice Browser" to Web-based services and how
can we appropriately build the Croatian language speech recognition system as
part of the "Voice Browser".

1 Introduction

Nowadays we are witnesses of new technologies and services, which are
constantly changing toward better improvement of communication capabilities
between users and services. Some traditional ways of communication such as
keyboard and display do not always prove to be the easiest and most practical
ways. In some situations where it is impractical to use keyboard, the natural
speech turns out to be the easiest way for data inputting.

We can imagine these two situations; in first one we are using the only old
telephone system for communication with our web application, and in second one
we are combining the traditional way with speech capability. In both situations we
must have a language, which describes how we can incorporate speech
capabilities into the web application. There are two standards; VoiceXML, and
SALT (Speech Application Language Tags)[3][11]. For each language there is an
interpreter which understands language and can connect our client application
with web. When we are using voice-only application with old telephone system,
the interpreter is called "Voice browser"[2], and when we are combining GUI
(Graphical User Interface) with voice, the interpreter is called "Multi-modal
browser"[8].

2 VoiceXML

VoiceXML is an XML language for writing Web pages you interact with by
listening to spoken prompts and jingles, and control by means of spoken input[1].
VoiceXML is different from HTML. Speech-based interface to web application
must have control over user-application interactions. HTML is designed for visual
Web pages and with HTML we are not having control over communication
between user and application. On the other hand, VoiceXML is designed to give us
control over spoken dialog between the user and the application. During dialog
between user and application each one takes its turn to speak. In each turn,
application first prompts user, and user in his turn responds or uses DTMF tones
(touch tones) on his telephone.

Can Web understand Croatian language?

Docurnent Serrer

Y
Eequest Document
WoleexhiL
Interpreter h
Coardext WoiceX ML Interpreter

A

L

Implernentaton Platform

Figure 1: VoiceXML Architecture [3]

The architectural model of VoiceXML is given in figure 1. When user dials
VoiceXML application, VoiceXML Interpreter requests root application document
from a web server (document server). Then the Web server replays with a
dynamically generated or static document. VoiceXML Interpreter processes
received document and based on that control conversation between user and
application. VoiceXML Interpreter and VoiceXML Interpreter Context monitor in
parallel user inputs through Implementation Platform. In this way, VoiceXML
Interpreter Context may always monitor for special phrases that can execute
some general activities such as connections with human operator or can change
characteristics of text-to-speech engine.

The Implementation Platform is responsible for communication with external
world, and is controlled by the VoiceXML interpreter context and by the VoiceXML
interpreter. The VoiceXML 2.0 specification defines that it must support: audio
output using audio files and text-to-speech (TTS), detecting and reporting
character (DTMF) and/or spoken input simultaneously and to control input
detection interval duration with a timer whose length is specified by a VoiceXML
document, and making a third party connection through a communications
network, such as the telephone[3]. In real voice interactive application, VoiceXML
Interpreter Context is responsible for the first contact with user: waiting for user
incoming call, answering on that call, acquiring the initial VoiceXML documents.
VoiceXML Interpreter coducts dialog between user and application, and
Implemention Platform generates events in accordance with user action.
VoiceXML Interpreter processes events specified by VoiceXML document while
other events are processed by VoiceXML Interpreter Context.

2.1 Key Concepts

A session is a process that starts with a telephone call and lasts until the
communication is disconnected. During the session, dialogs that the user is using
to communicate with application are turning. The session always ends after the
disconnection of telephone call and it can be caused by user, VoiceXML document
or Interpreter context request (Implementation Platform disconnects call).

Can Web understand Croatian language?

In VoiceXML concepts, VoiceXML documents define an application through the
set of dialogs between user and system. The application is proceeding through
the sequence of dialogs that are alternating in accordance with VoiceXML
documents. The user is always in a certain dialog and at the end of one dialog he
transits to another dialog or ends the session.

Documents that describe application share the same context defined by
application root document. The root document is automatically loaded whenever
one of application documents is loaded and stays active until any of application
documents is active (Figure 2). The application root document will be unloaded
only if there is a change of application (loads document from another application)
or at the end of session.

root

In D D

Figure 2: Root document

The basic element of VoiceXML application is dialog. It consists of menus and
forms. Forms collect data from user defined by form's input fields and menus
request from user to choose one of the offered options. Inside the forms many
fields that collect different data from user through the dialog can be created.
Every filed has specified grammar that defines which input data it can receive.
Similar to the ordinary HTML applications data collected by form can be send to
the web server for further processing. Menus are offering users several options
and after the selection of some option application can change dialog or even
application.

Similar to program languages, VoiceXML enables using of variables and
functions. Variables can be defined in any level and their scope follows an
inheritance model. A Subdialog has similar behaviour as a function call. During
the dialog we can call subdialog and make a new conversation inside it. At the
end of conversation we return to the original dialog. All parameters before the
subdialog call will be saved and after return from subdialog will be restored.
Subdialog can be used to create library of common tasks.

Implementation platform will generate event if user doesn't respond to a
prompt (respond timeout) or when the speech recognition system doesn't
recognize user's respond. VoiceXML allows handler writing that can take over
event processing. Handler follows inheritance model and if there isn't adequate
handler at dialog level it will be taken over by handler at a higher level and etc.

VoiceXML allows additional control over the application using the script
language - ECMAScript (JavaScript).

Can Web understand Croatian language?

2.2 VoiceXML examples

Here is a very simple VoiceXML application similar to the first "Hello World"
program. It says "Dobrodosli na CARNetove sluzbene stranice", plays a short
audio advertise jingle. After that synthesis engine announces news "Poslusajte
CARNetove najnovije vijesti", plays prerecorded news, and then exits. Prompts
can consist of any combination of prerecorded files, audio streams, or synthesized
speech.

<?xml version="1.0" encoding="is0-8859-2"7?>
<vxml version="2.0" lang="hr">

<form>

<block>

<prompt bargein="false">Dobrodosli na CARNetove sluzbene stranice!
<audio src="http://www.CARNet.hr/welcome.wav"/>
Poslusajte CARNetove najnovije vijesti

<audio src="rtsp://www.CARNet.hr/news.wav"/>
</prompt>

</block>

</form>

</vxml>

In the next example we are offering a menu to the user and he can choose
type of news: users, network, education, and administrators.

<?xml version="1.0" encoding="is0-8859-2"?>
<vxml version="2.0" lang="hr">

<menu>
<prompt>

Odaberite podrucje vijesti: <enumerate/>
</prompt>

<choice next="http://www.carnet.hr/users.vxml">
CARNet korisnici
</choice>
<choice next="http://www.CARNet.hr/network.vxml">
mreza
</choice>
<choice next="http://www.carnet.hr/educa.vxml|">
obrazovanje
</choice>
<choice next="http://www.carnet.hr/admin.vxml">
sistemci
</choice>
</menu>
</vxml>

We can imagine a dialog following the previous example between user and
server:

Computer: Odaberite podrucje vijesti: CARNet korisnici; mreza; obrazovanje;
sistemci.

User: Sigurnost

Computer: Nisam razumio sto ste rekli. (a platform-specific default message)

Can Web understand Croatian language?

Computer: Odaberite podrucje vijesti: CARNet korisnici; mreza; obrazovanije;
sistemci.

User: CARNet korisnici

Computer: (proceeds to http://www.CARNet.hr/users.vxml)

How can we use a form for collecting data, you can see in the next example.
Server, using a form, asks the user to choose a city and the number of
participants for videoconference.

<?xml version="1.0" encoding="is0-8859-2"?>

<vxml version="2.0" lang="hr">

<form>

<field name="city">

<prompt>S kojim gradom Zelite odrzati videokonferenciju?</prompt>
<option>Dubrovnik</option>

<option>0sijek</option>

<option>Pula</option>

<option>Rijeka</option>

<option>Split</option>

</field>

<field name="participants">

<prompt>OQOdabrana je <value expr="city"/>Koliki je predvideni broj
ucesnika?</prompt>

</field>

<block>

<submit next="http://www.CARNet.hr/videoconf handler" namelist="city
participants"/>

</block>

</form>

</vxml>

3 SALT - Speech Application Language Tags

Speech Application Language Tags or SALT is a small set of XML elements and
their associated attributes, events and methods that add speech and telephony
call-control features to existing Web-based application. SALT, different from
VoiceXML, isn’t independent language and its elements are embedded in existing
HTML, XHTML an XML pages [12].

SALT and VoiceXML have different technical goals. Whereas VoiceXML is
designed for the development of telephony-based application, SALT focuses on
adding multimodal capability to web-based application. Multimodal applications
have a capability to improve classic web-based applications with speech and
telephone call-control features. Multimodal applications enable users to interact
with it using combination of traditional ways such as a keyboard, keypad, mouse
and new approaches like speech or DTMF. Similar is with presentation of output
data because we can combine output on classical display with speech. In
Multimodal browser it is possible to use independently or concurrently both
approaches.

VoiceXML and SALT have different realisation of applications. VoiceXML uses a
document-based approach, where applications are built by one or more
documents that have tags which describe dialogs. On the other side, SALT takes
programming approach, where applications are made from objects, triggers and

Can Web understand Croatian language?

events. SALT uses intensively JavaScript to build the application because speech
recognition engine generates event after user's respond and through JavaScript
handler SALT processes this respond.

SALT architecture is similar to the VoiceXML architecture. Both architectures
have on one side document server and on the other side client application. SALT
client application is voice or multimodal browser capable to be used on whole
continuum of devices from PCs to mobile devices. SALT voice browser, like
VoiceXML voice browser, is exclusively used from telephone through POTS (Plain
Old Telephone System) or VoIP (Voice over IP) and there is no functional
difference between SALT and VoiceXML. We can see SALT architecture on Figure
3.

Simple phones

Figure 3: SALT Architecture [10]

3.1 SALT elements trough examples

SALT has very small set of tags. There are three main top-level tags:

<listen ...> configures the speech recognition engine, executes
recognition process and handles speech input events

<prompt ..> configures the text-to-speech engine and plays out defined
prompts

<dtmf ...> configures and control DTMF in telephony applications

The <dtmf> and <listen> top-level tags contain elements <grammar>
(defines used grammar) and <bind> (connects input filed with user respond).
The <listen> element can also contain <record> element (records user respond).

SALT elements are XML objects in the Document Object Model (DOM) of the
pages. As any programming objects, SALT elements contain methods (object
functions), properties (object variables), and event handlers (functions which
processing generated events), which are accessible to the script. It can also

Can Web understand Croatian language?

interact with other processes and events in execution of the web pages. Those
properties allow SALT's to be seamlessly integrated into existing web applications.

In our first example we use famous "Hello World" program, or more precisely
SALT application, which says "Hallo World".

<html xmins:salt=http://www.saltforum.org/2002/SALT>
<body onload="hello.Start()">
<salt:prompt id="hello">Hello World</salt:prompt>
</body>
</html>

In this very simple example we can see how simple it is to add SALT tag into a
HTML application. When this example is loaded in SALT compatible browser (for
this example it is not important if that voice or multimodal SALT browser) it
initiates text-to-speech (TTS) engine trough the method "Start()" and speech
synthesiser generates waveform which sounds like "Hallo World".

Next, more complicated, example shows us how can we use SALT speech
recognition capabilities. This is simple application through which we can get basic
information about CARNet projects. When the application is loaded in SALT
browser control is given to JavaScript function "RunApp()" which controls a
conversation. At the beginning the application says welcome message (using
"Welcome.Start()" function) and asks user to say the name of the project.
Function "recoProjectName()" initiates speech recognition using external XML
grammar. When speech recognition engine stops with recognition it generates
event "onreco" and handler function "processProjectName()" takes control. That
function binds recognized user respond with input field "ProjectName" and
submits form data to the server-side script "projectinfo.php".

<html xmins:salt="http://www.saltforum.org/2002/SALT" >
<body onload="RunApp()">

<form id="ProjectForm" method="post" action="projectinfo.php">
<input name="ProjectName" type="text"/>

</form>

<salt:prompt id="Welcom">
Dobrodosli na CARNetov katalog projekata

</salt:prompt>

<salt:prompt id="AskProjectName">
Molim vas ime traZzenog projekta

</salt:prompt>

<salt:listen id="recoProjectName" onreco="processProjectName()">
<salt:grammar src="projects.xml"/>

</salt:listen>

<script>
function RunApp()
{

if(ProjectForm.ProjectName.value=="")
{
Welcom.Start();
AskProjectName.Start();
RecoProjectName.Start();

b

Can Web understand Croatian language?

b

function processProjectName()

{
ProjectForm.ProjectName = recoProjectName.text;
ProjectForm.submit();

b

</script>
</body>
</html>

4 Voice and multimodal browser

Different from standard browser, Voice and Multimodal browsers have the
capability to improve web applications with speech. In the case of Voice browser,
the only communication channel between client and Voice browser or Voice server
is POTS or VolP. Voice browser is designed only for speech communication and
the client is always some kind of telephone equipment (classical or VoIP
telephone).

On the other side, Mutlimodal browser has a capability to be used in parallel
classical graphical user interface (keyboard, mouse, display, etc.) and speech
interface with DTMF capability.

With VoiceXML standard we can build only Voice browser that can be used only
for telephone applications. Around SALT standard we can build both type of
browsers. VoiceXML is an older standard and momentarily is actual VoiceXML
version 2.0. Several vendors have implemented VoiceXML 1.0 and some of
vendors follow new working draft VoiceXML 2.0. SALT is new standard and today
we don't have many implementations.

Unfortunately, commercial solutions are very expensive and it is very difficult
to find speech implementation with Croatian support. If we want to build voice or
multimodal applications we must first build adequate browser with Croatian
support. Carnegie Mellon University has developed open source implementation of
VoiceXML interpreter and is currently developing SALT interpreter. OpenVXI is an
open source implementation of VoiceXML interpreter and OpenSALT is an open
source implementation of SALT interpreter.

4.1 OpenVXI

OpenVXI isn't a complete solution for VoiceXML browser; it is only one
component of a complete VoiceXML platform. Figure 3 shows the components of a
VocieXML system. The speech browser platform has four parts[14]:

1. An operation administration and maintenance (OA&M) system
and main process. This collection of tools is responsible for system
management and error reporting. Also it invokes the speech browser
within a thread to begin execution.

2. The OpenVXI. It interprets VocieXML markup language and invokes
implementation platform (speech recognition, text-to-speech engine,
telephone call control) to render the markup.

Can Web understand Croatian language?

3. The Platform Components. The platform components provide the
services necessary for the system to run. The necessary components
are recognition engine, prompt engine, Internet fetch library and
ECMAScript (JavaScript) engine. The OpenVXI interacts with those
components through the interfaces (API) that must be implemented for
the system to run properly. The mechanism for communications
between interfaces implementations and components engines isn't
defined: for communication we can use direct approach or client/server
strategy.

4. The Telephony and base services. These services are necessary to
receive phone calls. Also, these services must have adequate hardware
support capable to control phone calls (receive, transfer, disconnect,
and wait for calls).

Speech Browser Wi el
P Latiomm Document Senver
Application
Openiil F IP Metmeri _J
pen N Mieb Server
[WESEA

Platform Componernts Application

Telephony Serices

T

Telephone
Metwark

Figure 4: OpenVXI System Architecture [13]

The OpenVXI toolkit doesn't have components necessary for full functional
Voice browser. If we want to build complete VoiceXML platform we must to
include missing parts.

Can Web understand Croatian language?

Speech i
i Browser
1
VXI F'l:t:tr Internet |ECMAScript | Logging i
1
1
Hesource Bus
Bl Rec APl | Prampt API Tel AP Ohject AP M AN
i d Drm
Toolkt Recognizer E = Telephaony Objects i
Telephory Services

Figure 5: OpenVXI Toolkit Architecture

Figure 5 shows OpenVXI toolkit architecture with all components. We have two

main parts: speech browser and platform toolkit. The Speech Browser parts
are[14]:

1. VXI. This component interprets all VoiceXML markup and controls
main loop. OpenVXI toolkit implements fully VoiceXML 1.0 language
and follows VoiceXML 2.0 (we don't have support for inline W3C
grammars within CDATA tags).

2. XML Parser API. It provides access to XML DOM parser and currently
is implemented by directly calling the open source Apache Xerecs and
DOM parser API.

3. ECMAScript (JavaScript) API. It provides access to the JavaScript
services, currently by integrated open source Mozzila SpiderMonky
JavaScript interpreter.

4. An Internet and cache Library API. This component provides
access to application documents via http or ftp protocol and has
support for POST method of data sending. OpenVXI toolkit integrates
open source W3C Libwww library.

5. A Logging interface. It is used to report events, diagnostics and
error messages to the system. OpenVXI toolkit implements only basic
logs to the file and optionally to the standard output.

Platform components of OpenVXI toolkit are only implemented as simulators.
If we want to build the system completely we have to integrate it with real
speech and prompt engine. For example, instead of the speech and prompt
simulator we can implement interfaces to the open source speech recognition

engine sphinx and open source text-to-speech engine festival.

Can Web understand Croatian language?

4.2 OpenSALT

Unfortunately, SALT is new standard and there is no open source
implementation available yet. Carnegie Mellon University is starting an open
source project called OpenSALT. The project will produced an open source SALT
1.0 compatible browser. The first release will be completed at the end of 2002.
The browser base is open source Mozilla web browser, Spinx recognition and
Festival synthesis software. Open SALT browser is going to support Windows and
Linux platform, but Windows release is going out first and Linux version is
expected later.

5 Speech Recognition and Synthesis

The previous chapters have explained basics of standards and products
important for building a completely functional web-based speech system. If we
want to interact with web using speech we have to use some of speech
recognition engine embedded in our system. Also, if we want to prompt user with
computer synthesised speech we must embed text-to-speech engine to our
system.

Today, we can find on the market many commercial products and also many
commercial complete solutions for Voice browsers. But, those products are
expensive and usually don't have support for exotic languages. In some situations
the only solution is to build a new system with available components. For most
of Academic community those are open source solutions or products. Some of
those solutions are Sphinx for speech recognition and Festival for text-to-speech
synthesis.

5.1 Sphinx

The Sphinx Group from Carnegie Mellon University has released a group of
products for building speech recognition engine. The most important products
are: sphinx 2 and sphinx 3 for speech recognition, SphinxTrain for acoustic
models training, web-based Language Modelling Tool and CMU-Cambridge
Statistical Language Modelling Toolkit for building language models[16].

Both speech recognition engines use 5-state HMM (Hidden Markov's Models)
for phones describing. Sphinx 2 is a real-time, large vocabulary, speaker
independent speech recognition engine, distributed as free software under
Apache-style license. Sphinx 3 is a slower but more accurate speech recognition
engine. Sphinx 2 is "semicontinuous" (uses tied mixtures), and Sphinx 3 uses
fully continuous observation densities (untied, so that each state has its own
distribution statistics). Sphinx 2 is portable and can be used on various types of
devices that require short response time. Sphinx 3 can be used for slower (not
real time) but more accurate applications like broadcast news transcriptions or
acoustic trainer.

If we want to build a successful speech recognition system we must have
appropriately trained acoustic models. Acoustic models describe how the basic
sound units (usually phone but sometimes can be word) change across time.
Each phoneme or word is modelled by a sequence of states and signal
observation probabilities called HMM. SphinxTrain is a tool for building acoustic
models for CMU Sphinx 2 and Sphinx 3 engines. With it we can train acoustic
models for any language, task or communication channel conditions that will
allow the run-time engines to recognize trained speech. Acoustic models training

Can Web understand Croatian language?

requires enough data, effort and pure hardware resources to build accurate and
task adapted acoustic models.

Speech engines use language models to improve accuracy of speech
recognition system. The language models describe likelihood of appearing word
sequence. Usually a N-gram model is used where N describes the number of
involved word. For example, Sphinx 2 uses trigram (3-gram) models where
sequences of three words are observed. We have two tools to build language
models: web-based Language Modelling Tool and CMU-Cambridge Statistical
Language Modelling Tool. With the first tool we simply upload a set of sentences
and web-engine creates language models for us. The second tool is more
elaborate and powerful.

Language models, plus acoustic models, plus Sphinx engine give us everything
we need to build a speech recognition system.

5.2 Festival

Text-to-speech engine is another important part of Voice browser platform
components. With it our Voice browser is capable to pronounce specially markup
part of VoiceXML documents. Festival is a complete open source solution for
building text-to-speech system [17]. With Festival we can build new voices and
play existing voices. Within the Festival we can identify three parts of the TTS
process:

1. Text analysis. To identify words and utterances from raw text.

2. Linguistic analysis. Finding pronunciations of the words and
assigning prosodic structure to them: phrasing, intonation, and
durations.

3. Waveform generation. To generate waveform from a fully specified
form (pronunciation and prosody).

The process of creating new voices is not trivial, but a dedicated person with
experience in speech recognition, computational linguistic and/or programming
can probably build a new voice in a week[17]. Unfortunately, the process of
building new voices is very far from automatic generating of new voices. The
good behaviour of Festival is the possibility to use external processes to perform
waveform synthesis. Festival can use text and linguistic analysis from MBROLA
project to generate waveform. All language already supported with MBROLA can
be used with Festival, and Croatian is one of MBROLA languages.

6 How can we build the Croatian Speech Recognition System?

The Voice or Multimodal browser can be build using OpenVXI or OpenSALT
toolkit, Sphinx as speech recognition engine, and Festival as text-to-speech
engine. Both engines must understand Croatian language. With Festival we have
an easier job because Festival can use text and linguistic analysis from MBROLA
project to generate waveform. MBROLA project supports Croatian language and
thus we can use results from MBROLA project with Festival engine to get Croatian
text-to-speech engine.

Now, we have a problem only with speech recognition engine, or more
precisely, with Croatian acoustic and language models for Sphinx engine.

Can Web understand Croatian language?

Carnegie Mellon University has built a system for real-time Croatian to English
and reverse speech translation. For that purpose they have built Croatian acoustic
and language models but those models aren't available to public. We only have
the solution to build our acoustic and language models. This is not a big problem
because we have tools from Sphinx group for acoustic and language building.
Acoustic and language models built for our dedicated application can be more
accurate from general models and our web application will be more successful.

6.1 Speech Recognition Theory

Speech recognition system transforms input acoustic signals in appropriate set
of phonemes or words in the process called “Speech recognition”. For that
purpose the digitised speech signal is first transformed into a set of useful
representatives of signals or features at a fixed rate, typically once every 10 to 30
msec (). These features are then used to search for the most likely word
candidate, determined by the acoustic, lexical, and language models. Throughout
this process, training data are used to determine the values of the model
parameters.

Figure 6: Features extraction

ep > |

VS —»]
|

segment segment
n n+1
Speech
analyzed
features
—

Vectors of acoustic
features

A vector o, of acoustic features is computed every 10 to 30 msec (P) from

digitalised speech frame VS (25~30msec). We use a set of transformations in
features extraction method to convert acoustic signal into few representatives of
them. In that process we try to reduce redundancy from acoustic signal and
decrease the influence of noise.

Can Web understand Croatian language?

Sequences of parameter vectors are assumed to form an exact representation
of speech waveform and can be treated as observations of acoustic word models

used to compute p(o/ IW), the probability of observing a sequence o] of vectors
when a word sequence W is pronounced. Given a sequence o] , a word sequence

W is generated by the speech recognition system with a search process based on
the rule [20][22]:

W =arg max p(ol |W)p(W)
w

Wis candidate with a maximum a-posteriori probability (MAP). Probability
plol 1W) is computed by Acoustic Models (AM), while probability pW) is
computed by Language Models (LM).

6.2 HMM and Acoustic models

The most used recognition paradigm in the past twenty years is known as
Hidden Markov Models (HMM). The HMM is a doubly stochastic model, in which
the generation of the recognized phoneme or word string and the frame-by-frame
features extracted from acoustic signal are both represented probabilistically as
Markov processes [21].

A hidden Markov model is defined as a pair of stochastic process (X,0). One of

the processes, X is a first order Markov chain and isn't directly observable (is
hidden). Second process O is sequence of random variables taking values in the
space of acoustic parameters, and is observable.

If oe O is acoustic vector of observed speech signal, and i, je X is a state of
HMM, then HMM model is defined with:

A=la; ;1i, je X} transition probabilities
B=1b,(0)l je X output distributions
I ={r, lie X} initial probabilities

where is:

a;; =p(X,=j,X,, =i) probability of model to be in state ; at the time ¢ if
previous state is i

b;(0o)=p(Y, =0l X, = j) probability of model to generate vector or symbol o in
the state j at the time ¢

z; = p(X,=1i) probability of model to be in the state i at the time ¢ (on the
beginning).

We have three problems when we use HMM for speech recognition:

Can Web understand Croatian language?

Evaluation - How do we compute probability pO] 1©,M) of HMM model M
with parameter @ ={A, B,II} generating an output sequence 0/ ?

Decoding - How do we compute the most probable state sequence X' of
model M with parameters © ={A, B,I1} if we have an output sequence 0/ ?

Training - How do we adjust the model parameters ® ={A, B,II} to maximize
likelihood of the model M generating the output sequence 0/ ?

Solutions of these problems give us powerful tool for speech recognition (more
about recognition and training algorithms can be found in [18],[19],[20] and

[22]).

We can classify HMM according to the nature of distribution function of matrix
B on:

1. Discrete HMM
2. Semicontinuous HMM
3. Continuous HMM

The simplest solution is discrete function of output distribution. In each frame
or observed segment of speech sighal we get one symbol in a finite alphabet of N
elements that is representatives of that segment. Technically speaking the vector
quantizer (VQ) divides vector space into N regions and every vector is replaced
by one symbol (numerical identifier) from codebook. Each state of HMM has
defined output distribution as a histogram (with N bins) of the occurrence-
frequency of each symbol. Discrete HMM assumes that all data within a region is
equally probable. Performance of discrete HMM is strongly dependent upon
accuracy of vector quantizer.

Continuous HMM has completely different assuming. Output distribution of
each state is represented by mixture density that defines the part of acoustic
space where vectors occur. Usually we use Gaussians distribution, and each
mixture component has a mean and variance. The boundaries between regions
aren't clear and partitions aren't rigid. HMM probability to generate observed
vector in each state is calculated as a sum of probability to generate observed
vector of each mixture components in that state. Continuous HMM must have
very large training database.

The third approach is between discrete and continuous models.
Semicontinuous or tied mixture HMM represents all vectors by continuous density
codebook. Semicontinuous model doesn't have different distribution for each
state of model, but all states of all models share common mixture density. The
output distribution of state is a sum of mixture of continuous density from
codebook normalized with "mixture weight". The entire acoustic space is covered
by a set of independent, usually Gaussian, densities. Those densities are obtained
in the similar way as VQ codebook in discrete HMM, and are represented by
means and covariance stored in a codebook. Semicontinuous HMM has a much
lower computational complexity than the continuous model and it can model
acoustic space much more accurately than the discrete model.

Can Web understand Croatian language?

Qoo a3 Aya ass

Hidden Markov
model

Speech features
(n-dimensional
vectors) 01 O O3 04 O5 Og

Figure 7: Hidden Markov Model with six states

In the modern speech recognition system, the acoustic model describes the
basic unit of acoustic signals, usually phoneme or word, with n-state hidden
Markov model (Figure 7). Models, usually, have five to seven states where the
first and last states are transitional states. With transitional state we can connect
two models in a more complex representatives of speech and thus build
continuous speech recognition system.

6.3 Language Model

Language model gives context or recognition environment for speech
recognition system. Every language has rules that describe relation between
words in sentences. Language model has embedded knowledge about relation
between words of language and describes the likelihood, probability, or penalty
taken when a sequence or collection of words is seen. The probability p(W) of

word's sequence W =w,,..,w, can be computed by Language model using
following expression:

n

i=1

Speech recognition system, usually, use N-gram model for language
modelling. Usually has been used trigram model where is accumulated knowledge
about sequence of three words [23].

Language model can significantly improve accuracy of speech recognition
system. Language model tuned for particular application gives the best results
(this is specially true for small vocabularies).

6.4 Acoustic and language modelling

Training of speech recognition system is difficult task. Through the training
process, acoustic and language models must be trained to increase accurancy of
speech recognition system. These two models are independent and can be trained
separately.

Can Web understand Croatian language?

Acoustic models are representing acoustic characteristics of base recognition
unit. A basic unit can be a phone or a word. A phone will be chosen when we
build large vocabulary speech recognition system. Word basic unit would be a
better solution if we built a small vocabulary (50~60 words) system.

Relatively slow articulators produce speech waveforms (articulators are human
organ responsible for speech waveforms generating) and a particular phone
depends on a preceding and following phone or simply context. We call this
phenomenon coarticulation. Coarticualtion effect can be modelled through
context-depended phone models. The amount of context is defined by chosen
model:

Monophone. This is the simplest solution in which surrounding context is not
used.

Allophone. This model has not got a surrounding context, but uses multiple
representatives of phone.

Biphone. Each phone model is represented only with a left or right context.
Triphone. Each phone model is represented by both a left and right context.

After we have chosen phone model, in the next step we must define the used
phones and create a dictionary. The dictionary describes pronunciation of all
words from training database, and same word can have different pronunciation.
Pronunciation is described by chosen phones. The dictionary also describes some
non-speech sounds like silence, background noise, cough, etc. These sounds
must be defined on phone's list as basic models.

The training database must be closely connected with real application. That
means if we are building telephone application, it is desirable to create training
database from recorded telephone speech. Also, the training database must have
all expected words of future application. If we would like to build speaker
independent speech recognition system, the training database must have a
different speaker recorded (different age, different gender, etc). The training
database must have a transcription of the recorded speech.

The last decision is a type of HMM. The most important question is the number
of state and type of output distribution. The number of state of HMM is in relation
with the phone model (or word model). If we would like to train acoustic model
based on word, usually 6 to 7 states are used, and in the case of triphone models
3 to 5 states are used. Choice of output distribution can be semicontinuous or
continuous and depends on training database. Continuous acoustic models are
more accurate but must have bigger training database for appropriate training.

Language modelling is important to reduce complexity of speech recognition
task and increase recognition accuracy. In a speech recognition system, usually
a statistical N-gram model is used. A powerful behaviour of N-gram modelling is
the fact that a model can be directly estimated from text data (model dose not
depend on the acoustics). For trigram estimate can be described as occurring-
frequency of some trigram normalized with sum of occurring-frequency of all
trigram which have the same first two words:

Can Web understand Croatian language?

c(wi,wji,wi)

pwi lwi,w;)= Z

Wi, wj,wp)

W,

This simple approach has the "unseen N-grams" that don't occur in the training
set will be given a zero probability, and that N-grams cannot be recognized. One
solution for that problem is to hold some amount of probability to unseen N-
grams (back-off method). In the case of trigram, unseen trigram will be
estimated using bigram on reserved probability mass. The same process happens
with bigrams, when unseen bigram will be estimated using unigram on reserved
probability mass of unseen bigram [23].

Training database for Language modelling is a corpus of text data adequate for
our application (e.g. we mustn't use medical corpus for language modelling to
flay reservation system). We must only choose ratio discount for back-off
calculation. Usually this is 0.5 small corpora and will be applied to all counts (that
means half of all probability mass will be reserved for unseen N-grams, and half
of reserved probability mass will reserved for unseen N.;-grams). Small corpora
means < 50k words, and for larger corpora ratio discount can be smaller because
we must reserve smaller probability mass for unseen N-grams.

Acoustic and language models are all we need to build speech recognition
system. Tools for acoustic and language mentioned earlier can be found on
Internet [16].

7 Conclusion

Can the web understand Croatian language? Yes, it can! We have standards
that define markup language necessary for speech communication with web
application. These standards enable us to build web application that can
understand Croatian language. But this is not a simple task.

In the simplest solution we can develop application from prerecorded Croatian
sentence. In that case we don't need text-to-speech engine. Users responds can
be input using DTMF (touch tone). Maintenance of this system is complicated
because for every change in application dialog we must prerecord new sentences,
and in that case we could use text-to-speech engine such as Festival. Festival can
be integrated with existing open source toolkit (OpenVXI and OpenSALT) to build
a complete solution possible to generate Croatian speech waveforms.

The most complicated solution can be used to develop complete Voice or
Multimodal browser for Croatian language, which is possible to understand and
talk Croatian. That can be done with OpenVXI or OpenSALT (VoiceXML or SALT
interpreter), Sphinx (speech recognition engine), and Festival (text-to-speech
engine). Integration of these components demands some programmer's
knowledge but it is not an impossible task. Integrated system is only one part of
the problem and acoustic and language modelling is another part. For modelling
we have to collect and prepare adequate training database and that job request
time and resource. At the end we will get a very usable system and investment
will return to us in simplified development of further voice web based
applications.

We have the technology and if we use it in the right way we can achieve the
aim, "build a useful Croatian voice portal”, with more or less efforts.

Can Web understand Croatian language?

8 References

[1] David Raggett, "Getting started with VoiceXML 2.0",
http://www.w3.0org/Voice/Guide/

[2] W3C, "Woice Browser" Activity — Voice enabling the Web!,
http://www.w3.0org/voice

[3] W3C Working Draft, "Voice Extensible Markup Language (VoiceXML) Version
2.0", http://www.w3.0rg/TR/2002/WD-voicexml20-20020424/, 24 April 2002

[4] W3C Working Draft, "Voice Browser Call Control: CCXML Version 1.0",
http://www.w3.0rg/TR/2002/WD-ccxml-20020221/, 21st February 2002

[5] W3C Working Draft, "Semantic Interpretation for Speech Recognition",
http://www.w3.0rg/TR/2001/WD-semantic-interpretation-20011116/, 16 November
2001

[6] W3C Candidate Recommendation, "Speech Recognition Grammar
Specification Version 1.0", http:/www.w3.0rg/TR/2002/CR-speech-grammar-
20020626, 26 June 2002

[7] W3C Working Draft, "Speech Synthesis Markup Language Specification",
http://www.w3.0rg/TR/2002/WD-speech-synthesis-20020405/, 5 April 2002

[8] WB3C, "Multimodal Interaction Activity", http://www.w3.0rg/2002/mmi/

[9] Stéphane H. Maes (smeas@us.ibm.com) - IBM, and Chummun Ferial
(chummun.ferial@ipce.eu.sony.jp) - Sony, "Multi-Modal Browser
Architecture",

[10] SALT Forum Technical With Paper, "Speech Application Language Tags
(SALT)", http://www.saltforum.org

[11] SALT Forum, " Speech Application Language Tags (SALT) - Specification
1.0", 15 July 2002

[12] Hitesh Seth, "SALT by Example", VoiceXMLPlanet.com,
http://www.voicexmlplanet.com/articles/saltl.html

[13] Brian Eberman, Jerry Carter, Darren Meyer, and David Goddeau, "Building
VoiceXML Browsers with OpenVXI", WWW2002, May 7-11, 2002, Honolulu,
Hawaii, USA, http://www2002.org/CDROM/refereed/260/

[14] SpeechWorks International, Inc., "OpenVXI",
http://www.speech.cs.cmu.edu/openvxi/

[15] Carnegie Mellon University, "OpenSALT",
http://www.speech.cs.cmu.edu/OpenSALT

[16] Carnegie Mellon University, "Sphinx",
http://www.speech.cs.cmu.edu/sphinx

[17] "Festival Speech Synthesis System", http://www.festvox.org

[18] Aljosa Jakovci¢,"Raspoznavanje govora primjenom skrivenih Markovljevih
modela", Faculty of Electrical Engineering, Zagreb

[19] Albert Novak, "Raspoznavanje govora uporabom skrivenih markovljevih
modela i teorije vali¢a", Faculty of Eletrical Engienering, Zagreb, 2002.

Can Web understand Croatian language?

[20] Lawrence Rabiner, Biing Hwang Juang: "Fundamentals of Speech
Recognition”, Prentice-Hall, inc., 1993.

[21] Donald A. Cole, Joseph Mariani, HansUszkoreit, Aunic Zaenen, Victor Zue:
“Survey of state of the Art in Human Language”.
http://cslu.cse.ogi.edu/HLTsurvey/

[22] S. Young, D. Kreshow, J. Odell, D. Ollason, V. Voltchev, P. Woodland: “The
HTK Book”, Cambridge University, 1999.

[23] Albert Novak, "Sustavi znanja u raspoznavanju govora", Faculty of Electrical
Engineering, Zagreb, 1999.

